Your Location:
Home >
Browse articles >
联邦无监督表示学习
常规文章 | Updated:2023-08-29
    • 联邦无监督表示学习

    • Federated unsupervised representation learning

    • 信息与电子工程前沿(英文)   2023年24卷第8期 页码:1181-1193
    • DOI:10.1631/FITEE.2200268    

      中图分类号: TP183
    • 收稿:2022-06-21

      录用:2022-10-27

      纸质出版:2023-08-0

    Scan QR Code

  • 张凤达, 况琨, 陈隆, 等. 联邦无监督表示学习[J]. 信息与电子工程前沿(英文), 2023,24(8):1181-1193. DOI: 10.1631/FITEE.2200268.

    Fengda ZHANG, Kun KUANG, Long CHEN, et al. Federated unsupervised representation learning[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(8): 1181-1193. DOI: 10.1631/FITEE.2200268.

  •  
  •  
icon
The trial reading is over, you can activate your VIP account to continue reading.
Deactivate >
icon
The trial reading is over. You can log in to your account, go to the personal center, purchase VIP membership, and read the full text.
Already a VIP member?
Log in >

0

浏览量

263

Downloads

1

CSCD

>
文章被引用时,请邮件提醒。
Submit
工具集
下载
参考文献导出
分享
收藏
添加至我的专辑

相关文章

Prototypical clustered federated learning for heart rate prediction
FedMcon: an adaptive aggregation method for federated learning via meta controller&
Federated model with contrastive learning and adaptive control variates for human activity recognition
Federated deep reinforcement learning based computation offloading in a low Earth orbit satellite edge computing system
Toward an accurate mobility trajectory recovery using contrastive learning

相关作者

宫庆媛
周义朋
苏翔
黎子玥
陈炯
陈阳
阮辉
殷勇杰

相关机构

复旦大学智能复杂体系基础理论与关键技术实验室
麦考瑞大学计算学院
赫尔辛基大学农业科学系
科隆大学信息系统系
蔚来汽车
0