FOLLOWUS
1.School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
2.Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou 510006, China
‡Corresponding author
纸质出版日期:2023-04-0 ,
收稿日期:2022-10-16,
录用日期:2023-02-02
Scan QR Code
黄棉烽, 刘菊华. 一种应用于目标检测和跟踪的和差波束扫描的双周期漏波天线阵列[J]. 信息与电子工程前沿(英文), 2023,24(4):567-581.
MIANFENG HUANG, JUHUA LIU. An array of two periodic leaky-wave antennas with sum and difference beam scanning for application in target detection and tracking. [J]. Frontiers of information technology & electronic engineering, 2023, 24(4): 567-581.
黄棉烽, 刘菊华. 一种应用于目标检测和跟踪的和差波束扫描的双周期漏波天线阵列[J]. 信息与电子工程前沿(英文), 2023,24(4):567-581. DOI: 10.1631/FITEE.2200473.
MIANFENG HUANG, JUHUA LIU. An array of two periodic leaky-wave antennas with sum and difference beam scanning for application in target detection and tracking. [J]. Frontiers of information technology & electronic engineering, 2023, 24(4): 567-581. DOI: 10.1631/FITEE.2200473.
本文提出一种两个基片集成波导(SIW)周期性漏波天线(LWA)组成的天线阵列,该阵列具有和差波束扫描功能,可应用于目标检测和跟踪。阵列由两个具有不同周期的漏波天线组成,其中每个漏波天线通过
n
=-1空间谐波辐射产生窄波束。这两个漏波天线因为具有不同的周期所以可产生两个不同方向的波束。当对阵列进行同相馈电时,这两个波束将组合成和波束;当对阵列进行反相馈电时,两个波束则组合成差波束。我们设计了集成180°混合网络的阵列,并对其加工与实测。实测结果显示阵列的和波束增益最高可达15.9 dBi,和波束扫描范围为-33.4°至20.8°。在扫描范围内,差波束中的零点方向与和波束的辐射方向角一致,最低的零点深度为-40.8 dB。实测结果表明该天线阵列具有优异的性能,能够为目标检测和跟踪应用提供一种低复杂度和低成本的替代解决方案。
An array of two substrate-integrated waveguide (SIW) periodic leaky-wave antennas (LWAs) with sum and difference beam scanning is proposed for application in target detection and tracking. The array is composed of two periodic LWAs with different periods
in which each LWA generates a narrow beam through the
n
=-1 space harmonic. Due to the two different periods for the two LWAs
two beams with two different directions can be realized
which can be combined into a sum beam when the array is fed in phase or into a difference beam when the array is fed 180° out of phase. The array integrated with 180° hybrid is designed
fabricated
and measured. Measurement results show that the sum beam can reach a gain up to 15.9 dBi and scan from -33.4° to 20.8°. In the scanning range
the direction of the null in the difference beam is consistent with the direction of the sum beam
with the lowest null depth of -40.8 dB. With the excellent performance
the antenna provides an alternative solution with low complexity and low cost for target detection and tracking.
天线漏波天线(LWA)基片集成波导(SIW)和差波束目标检测和跟踪
AntennaLeaky-wave antenna (LWA)Substrate-integrated waveguide (SIW)Sum and difference beamTarget detection and tracking
Bialkowski ME, Wang YF, 2010. Wideband microstrip 180° hybrid utilizing ground slots. IEEE Microw Wirel Compon Lett, 20(9):495-497. doi: 10.1109/LMWC.2010.2056677http://doi.org/10.1109/LMWC.2010.2056677
Geng YJ, Wang JH, Li YJ, et al., 2018. New design of beam-formed leaky-wave antenna based on substrate integrated waveguide in a confined space. IEEE Trans Antenn Propag, 66(11):6334-6339. doi: 10.1109/TAP.2018.2867018http://doi.org/10.1109/TAP.2018.2867018
Gil-Martínez A, Poveda-García M, García-Fernández J, et al., 2022a. Direction finding of RFID tags in UHF band using a passive beam-scanning leaky-wave antenna. IEEE J Radio Freq Identif, 6:552-563. doi: 10.1109/JRFID.2022.3180285http://doi.org/10.1109/JRFID.2022.3180285
Gil-Martínez A, Poveda-García M, Cañete-Rebenaque D, et al., 2022b. Frequency-scanned monopulse antenna for RSSI-based direction finding of UHF RFID tags. IEEE Antenn Wirel Propag Lett, 21(1):158-162. doi: 10.1109/LAWP.2021.3122233http://doi.org/10.1109/LAWP.2021.3122233
Gil-Martínez A, Poveda-García M, López-Pastor JA, et al., 2022c. Wi-Fi direction finding with frequency-scanned antenna and channel-hopping scheme. IEEE Sens J, 22(6):5210-5222. doi: 10.1109/JSEN.2021.3122232http://doi.org/10.1109/JSEN.2021.3122232
Gómez-Tornero JL, 2022. Smart leaky-wave antennas for iridescent IoT wireless networks. In: Guo YJ, Ziolkowski RW (Eds.), Antenna and Array Technologies for Future Wireless Ecosystems. Institute of Electrical and Electronics Engineers, Inc., Piscataway, USA, p.119-181. doi: 10.1002/9781119813910.ch4http://doi.org/10.1002/9781119813910.ch4
Hansen RC, 2009. Phased Array Antennas (2nd Ed.). John Wiley & Sons, Inc., Hoboken, USA. doi: 10.1002/9780470529188http://doi.org/10.1002/9780470529188
Hansen WW, 1946. Radiating Electromagnetic Wave Guide. US Patent 2402622.
Huang MF, Liu JH, 2022. A null frequency scanning leaky-wave antenna. IEEE Trans Antenn Propag, 70(9):7625-7635. doi: 10.1109/TAP.2022.3167723http://doi.org/10.1109/TAP.2022.3167723
Kim SG, Chang K, 2003. Low-cost monopulse antenna using bi-directionally-fed microstrip patch array. Electron Lett, 39(20):1428-1429. doi: 10.1049/el:20030963http://doi.org/10.1049/el:20030963
Li YJ, Wang JH, 2018. Dual-band leaky-wave antenna based on dual-mode composite microstrip line for microwave and millimeter-wave applications. IEEE Trans Antenn Propag, 66(4):1660-1668. doi: 10.1109/TAP.2018.2800705http://doi.org/10.1109/TAP.2018.2800705
Li YX, Xue Q, Yung EKN, et al., 2010. The periodic half-width microstrip leaky-wave antenna with a backward to forward scanning capability. IEEE Trans Antenn Propag, 58(3):963-966. doi: 10.1109/TAP.2009.2039304http://doi.org/10.1109/TAP.2009.2039304
Liu JH, 2021. Periodic leaky-wave antennas based on microstrip-fed slot array with different profile modulations for suppressing open stopband and n=-2 space harmonic. IEEE Trans Antenn Propag, 69(11):7364-7376. doi: 10.1109/TAP.2021.3078525http://doi.org/10.1109/TAP.2021.3078525
Liu JH, Jackson DR, Long YL, 2011. Modal analysis of dielectric-filled rectangular waveguide with transverse slots. IEEE Trans Antenn Propag, 59(9):3194-3203. doi: 10.1109/TAP.2011.2161444http://doi.org/10.1109/TAP.2011.2161444
Liu JH, Jackson DR, Long YL, 2012. Substrate integrated waveguide (SIW) leaky-wave antenna with transverse slots. IEEE Trans Antenn Propag, 60(1):20-29. doi: 10.1109/TAP.2011.2167910http://doi.org/10.1109/TAP.2011.2167910
Liu JH, Zhou WL, Long YL, 2018. A simple technique for open-stopband suppression in periodic leaky-wave antennas using two nonidentical elements per unit cell. IEEE Trans Antenn Propag, 66(6):2741-2751. doi: 10.1109/TAP.2018.2819701http://doi.org/10.1109/TAP.2018.2819701
Mailloux R, 2018. Phased Array Antenna Handbook (3rd Ed.). Artech House, Boston, USA.
Menzel W, 1978. A new travelling wave antenna in microstrip. Proc 8th European Microwave Conf, p.302-306. doi: 10.1109/EUMA.1978.332503http://doi.org/10.1109/EUMA.1978.332503
Milligan TA, 2005. Modern Antenna Design (2nd Ed.). John Wiley & Sons, Inc., Hoboken, USA. doi: 10.1002/0471720615http://doi.org/10.1002/0471720615
Montaseri N, Mallahzadeh A, 2020. Modulated reactance surfaces with several modulation indices for multibeam leaky-wave antenna design. IEEE Trans Antenn Propag, 68(12):8156-8161. doi: 10.1109/TAP.2020.2996910http://doi.org/10.1109/TAP.2020.2996910
Oliner AA, Jackson DR, 2007. Leaky-wave antennas. In: Volakis JL (Ed.), Antenna Engineering Handbook (4th Ed.). McGraw-Hill, New York, USA, p.11-2-11-12.
Pan YS, Cheng Y, Dong YD, 2022. Surface plasmon polariton leaky-wave antennas with wideband arbitrary multibeam radiation. IEEE Trans Antenn Propag, 70(2):931-942. doi: 10.1109/TAP.2021.3111210http://doi.org/10.1109/TAP.2021.3111210
Paulotto S, Baccarelli P, Frezza F, et al., 2009. A novel technique for open-stopband suppression in 1-D periodic printed leaky-wave antennas. IEEE Trans Antenn Propag, 57(7):1894-1906. doi: 10.1109/TAP.2009.2019900http://doi.org/10.1109/TAP.2009.2019900
Poveda-García M, Gómez-Tornero JL, 2021. Ambiguity resolution in amplitude-monopulse systems using broad-beam patterns. IEEE Antenn Wirel Propag Lett, 20(4):503-507. doi: 10.1109/LAWP.2021.3055275http://doi.org/10.1109/LAWP.2021.3055275
Poveda-García M, Cañete-Rebenaque D, Gómez-Tornero JL, 2019. Frequency-scanned monopulse pattern synthesis using leaky-wave antennas for enhanced power-based direction-of-arrival estimation. IEEE Trans Antenn Propag, 67(11):7071-7086. doi: 10.1109/TAP.2019.2925970http://doi.org/10.1109/TAP.2019.2925970
Poveda-García M, Gómez-Alcaraz A, Cañete-Rebenaque D, et al., 2020. RSSI-based direction-of-departure estimation in Bluetooth low energy using an array of frequency-steered leaky-wave antennas. IEEE Access, 8:9380-9394. doi: 10.1109/ACCESS.2020.2965233http://doi.org/10.1109/ACCESS.2020.2965233
Pozar DM, 2011. Microwave Engineering (4th Ed.). John Wiley & Sons, Inc., New York, USA.
Rahimi MR, Sharawi MS, Wu K, 2021. Higher-order space harmonics in substrate integrated waveguide leaky-wave antennas. IEEE Trans Antenn Propag, 69(8):4332-4346. doi: 10.1109/TAP.2020.3048530http://doi.org/10.1109/TAP.2020.3048530
Ranjan R, Ghosh J, 2019. SIW-based leaky-wave antenna supporting wide range of beam scanning through broadside. IEEE Antenn Wirel Propag Lett, 18(4):606-610. doi: 10.1109/LAWP.2019.2897836http://doi.org/10.1109/LAWP.2019.2897836
Sarkar A, Naqvi AH, Lim S, 2020. (40 to 65) GHz higher order mode microstrip-based dual band dual beam tunable leaky-wave antenna for millimeter wave applications. IEEE Trans Antenn Propag, 68(11):7255-7265. doi: 10.1109/TAP.2020.2995430http://doi.org/10.1109/TAP.2020.2995430
Scherr S, Ayhan S, Adamiuk G, et al., 2014. Ultrawide bandwidth 180°-hybrid-coupler in planar technology. Int J Microw Sci Technol, 2014:486051. doi: 10.1155/2014/486051http://doi.org/10.1155/2014/486051
Singh AK, Paras N, 2022. A dual-beam steering one dimensional periodic leaky-wave antenna for large coverage. AEU-Int J Electron Commun, 145:154086. doi: 10.1016/j.aeue.2021.154086http://doi.org/10.1016/j.aeue.2021.154086
Tamura J, Arai H, 2022. Angle-of-arrival estimation using null-steering antennas for simplicity and accuracy enhancement. IEEE Int Symp on Antennas and Propagation and USNC-URSI Radio Science Meeting, p.415-416. doi: 10.1109/AP-S/USNC-URSI47032.2022.9886859http://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9886859
Topak E, Hasch J, Wagner C, et al., 2013. A novel millimeter-wave dual-fed phased array for beam steering. IEEE Trans Microw Theory Tech, 61(8):3140-3147. doi: 10.1109/TMTT.2013.2267935http://doi.org/10.1109/TMTT.2013.2267935
Williams JT, Baccarelli P, Paulotto S, et al., 2013. 1-D combline leaky-wave antenna with the open-stopband suppressed: design considerations and comparisons with measurements. IEEE Trans Antenn Propag, 61(9):4484-4492. doi: 10.1109/TAP.2013.2271234http://doi.org/10.1109/TAP.2013.2271234
Xu SD, Guan DF, Zhang QF, et al., 2019. A wide-angle narrowband leaky-wave antenna based on substrate integrated waveguide-spoof surface plasmon polariton structure. IEEE Antenn Wirel Propag Lett, 18(7):1386-1389. doi: 10.1109/LAWP.2019.2917561http://doi.org/10.1109/LAWP.2019.2917561
Zhang CH, Ren J, Du XY, et al., 2021. Dual-beam leaky-wave antenna based on dual-mode spoof surface plasmon polaritons. IEEE Antenn Wirel Propag Lett, 20(10):2008-2012. doi: 10.1109/LAWP.2021.3102060http://doi.org/10.1109/LAWP.2021.3102060
Zhang QL, Zhang QF, Liu HW, et al., 2019. Dual-band and dual-polarized leaky-wave antenna based on slotted SIW. IEEE Antenn Wirel Propag Lett, 18(3):507-511. doi: 10.1109/LAWP.2019.2895339http://doi.org/10.1109/LAWP.2019.2895339
Zhou WL, Liu JH, Long YL, 2018. Investigation of shorting vias for suppressing the open stopband in an SIW periodic leaky-wave structure. IEEE Trans Microw Theory Tech, 66(6):2936-2945. doi: 10.1109/TMTT.2018.2818140http://doi.org/10.1109/TMTT.2018.2818140
Zhou WL, Liu JH, Long YL, 2019. Applications of the open-stopband suppression in various periodic leaky-wave antennas with tapered half-wavelength line. IEEE Trans Antenn Propag, 67(11):6811-6820. doi: 10.1109/TAP.2019.2925192http://doi.org/10.1109/TAP.2019.2925192
关联资源
相关文章
相关作者
相关机构