FOLLOWUS
1.Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, China
2.Aviation Key Laboratory of Science and Technology on Electromagnetic Environmental Effects, Shenyang 110000, China
3.Science and Technology on Antenna and Microwave Laboratory, Xidian University, Xi'an 710071, China
‡Corresponding author
纸质出版日期:2023-11-0 ,
收稿日期:2023-03-23,
录用日期:2023-08-22
Scan QR Code
任爱娣, 余成苇, 杨利霞, 等. 一种用于5G金属边框智能手机的高隔离度耦合馈电模块[J]. 信息与电子工程前沿(英文版), 2023,24(11):1657-1664.
AIDI REN, CHENGWEI YU, LIXIA YANG, et al. A high-isolation coupled-fed building block for metal-rimmed 5G smartphones. [J]. Frontiers of information technology & electronic engineering, 2023, 24(11): 1657-1664.
任爱娣, 余成苇, 杨利霞, 等. 一种用于5G金属边框智能手机的高隔离度耦合馈电模块[J]. 信息与电子工程前沿(英文版), 2023,24(11):1657-1664. DOI: 10.1631/FITEE.2300203.
AIDI REN, CHENGWEI YU, LIXIA YANG, et al. A high-isolation coupled-fed building block for metal-rimmed 5G smartphones. [J]. Frontiers of information technology & electronic engineering, 2023, 24(11): 1657-1664. DOI: 10.1631/FITEE.2300203.
提出一款应用于第五代金属边框智能手机的高隔离度两天线模块。基于一个蚀刻在地板上的T形缝隙,通过合理地设计一个耦合馈电环天线和一个耦合馈电缝隙天线,实现了一款紧凑的两天线模块。尽管耦合馈电环天线和耦合馈电缝隙天线共口径,两者之间的隔离度高于30 dB。随后,通过集成4个两天线模块,实现了一款8×8多入多出系统。该系统实测互耦和包络相关系数分别小于−18.5 dB和0.02。
Chang L, He WB, Chen XM, et al., 2022. Zero ground clearance dual antenna pair for metal-cased fifth-generation multiple input multiple output smartphone. Front Inform Technol Electron Eng, 23(10):1562-1567. https://doi.org/10.1631/FITEE.2200119https://doi.org/10.1631/FITEE.2200119
Chen QG, Lin HW, Wang JP, et al., 2019. Single ring slot-based antennas for metal-rimmed 4G/5G smartphones. IEEE Trans Antenn Propag, 67(3):1476-1487. https://doi.org/10.1109/tap.2018.2883686https://doi.org/10.1109/tap.2018.2883686
Fang YX, Liu Y, Jia YT, et al., 2022. 5G SAR-reduction MIMO antenna with high isolation for full metal-rimmed tablet device. IEEE Trans Antenn Propag, 70(5):3846-3851. https://doi.org/10.1109/tap.2021.3137295https://doi.org/10.1109/tap.2021.3137295
Guo JL, Cui L, Li C, et al., 2018. Side-edge frame printed eight-port dual-band antenna array for 5G smartphone applications. IEEE Trans Antenn Propag, 66(12):7412-7417. https://doi.org/10.1109/tap.2018.2872130https://doi.org/10.1109/tap.2018.2872130
Hei YQ, He JG, Li WT, 2021. Wideband decoupled 8-element MIMO antenna for 5G mobile terminal applications. IEEE Antenn Wirel Propag Lett, 20(8):1448-1452. https://doi.org/10.1109/lawp.2021.3086261https://doi.org/10.1109/lawp.2021.3086261
Hong W, 2017. Solving the 5G mobile antenna puzzle: assessing future directions for the 5G mobile antenna paradigm shift. IEEE Microw Mag, 18(7):86-102. https://doi.org/10.1109/mmm.2017.2740538https://doi.org/10.1109/mmm.2017.2740538
Hu W, Chen Z, Qian L, et al., 2022. Wideband back-cover antenna design using dual characteristic modes with high isolation for 5G MIMO smartphone. IEEE Trans Antenn Propag, 70(7):5254-5265. https://doi.org/10.1109/tap.2022.3145456https://doi.org/10.1109/tap.2022.3145456
Hu W, Li QS, Wu H, et al., 2023. Dual-band antenna pair with high isolation using multiple orthogonal modes for 5G smartphones. IEEE Trans Antenn Propag, 71(2):1949-1954. https://doi.org/10.1109/tap.2022.3233458https://doi.org/10.1109/tap.2022.3233458
Jiang W, Liu B, Cui YQ, et al., 2019. High-isolation eight-element MIMO array for 5G smartphone applications. IEEE Access, 7:34104-34112. https://doi.org/10.1109/access.2019.2904647https://doi.org/10.1109/access.2019.2904647
Li MY, Ban YL, Xu ZQ, et al., 2016. Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications. IEEE Trans Antenn Propag, 64(9):3820-3830. https://doi.org/10.1109/tap.2016.2583501https://doi.org/10.1109/tap.2016.2583501
Li YX, Sim CYD, Luo Y, et al., 2019. High-isolation 3.5 GHz eight-antenna MIMO array using balanced open-slot antenna element for 5G smartphones. IEEE Trans Antenn Propag, 67(6):3820-3830. https://doi.org/10.1109/tap.2019.2902751https://doi.org/10.1109/tap.2019.2902751
Liu Y, Ren AD, Liu H, et al., 2019. Eight-port MIMO array using characteristic mode theory for 5G smartphone applications. IEEE Access, 7:45679-45692. https://doi.org/10.1109/access.2019.2909070https://doi.org/10.1109/access.2019.2909070
Luo Y, Zhu L, Liu Y, et al., 2022. A decoupling structure without sacrificing antenna‐element performance for 5G smartphone designs. Int J RF Microw Comput-Aided Eng, 32(9):e23258. https://doi.org/10.1002/mmce.23258https://doi.org/10.1002/mmce.23258
Luomaniemi R, Ylä-Oijala P, Lehtovuori A, et al., 2021. Designing hand-immune handset antennas with adaptive excitation and characteristic modes. IEEE Trans Antenn Propag, 69(7):3829-3839. https://doi.org/10.1109/tap.2020.3044640https://doi.org/10.1109/tap.2020.3044640
Qu LY, Piao HY, 2022. A dual-port single-dipole MIMO antenna pair based on selective modal excitation for 5G metal-rimmed terminals. IEEE Access, 10:100208-100214. https://doi.org/10.1109/access.2022.3188017https://doi.org/10.1109/access.2022.3188017
Ren AD, Liu Y, Sim CYD, 2019a. A compact building block with two shared-aperture antennas for eight-antenna MIMO array in metal-rimmed smartphone. IEEE Trans Antenn Propag, 67(10):6430-6438. https://doi.org/10.1109/tap.2019.2920306https://doi.org/10.1109/tap.2019.2920306
Ren AD, Liu Y, Yu HW, et al., 2019b. A high-isolation building block using stable current nulls for 5G smartphone applications. IEEE Access, 7:170419-170429. https://doi.org/10.1109/access.2019.2955495https://doi.org/10.1109/access.2019.2955495
Ren ZY, Zhao AP, Wu SJ, 2019. MIMO antenna with compact decoupled antenna pairs for 5G mobile terminals. IEEE Antenn Wirel Propag Lett, 18(7):1367-1371. https://doi.org/10.1109/lawp.2019.2916738https://doi.org/10.1109/lawp.2019.2916738
Sultan KS, Abdullah HH, Abdallah EA, et al., 2020. Metasurface-based dual polarized MIMO antenna for 5G smartphones using CMA. IEEE Access, 8:37250-37264. https://doi.org/10.1109/access.2020.2975271https://doi.org/10.1109/access.2020.2975271
Sun LB, Li Y, Zhang ZJ, et al., 2020. Self-decoupled MIMO antenna pair with shared radiator for 5G smartphones. IEEE Trans Antenn Propag, 68(5):3423-3432. https://doi.org/10.1109/tap.2019.2963664https://doi.org/10.1109/tap.2019.2963664
Sun LB, Li Y, Zhang ZJ, 2021. Wideband integrated quad-element MIMO antennas based on complementary antenna pairs for 5G smartphones. IEEE Trans Antenn Propag, 69(8):4466-4474. https://doi.org/10.1109/tap.2021.3060020https://doi.org/10.1109/tap.2021.3060020
Wong KL, Tsai CY, Lu JY, 2017. Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone. IEEE Trans Antenn Propag, 65(4):1765-1778. https://doi.org/10.1109/tap.2017.2670534https://doi.org/10.1109/tap.2017.2670534
Ye Y, Zhao X, Wang JY, 2022. Compact high-isolated MIMO antenna module with chip capacitive decoupler for 5G mobile terminals. IEEE Antenn Wirel Propag Lett, 21(5):928-932. https://doi.org/10.1109/lawp.2022.3152236https://doi.org/10.1109/lawp.2022.3152236
Zhang HH, Liu XZ, Cheng GS, et al., 2022. Low-SAR four-antenna MIMO array for 5G mobile phones based on the theory of characteristic modes of composite PEC-lossy dielectric structures. IEEE Trans Antenn Propag, 70(3):1623-1631. https://doi.org/10.1109/tap.2021.3133432https://doi.org/10.1109/tap.2021.3133432
Zhang XX, Ren AD, Liu Y, 2020. Decoupling methods of MIMO antenna arrays for 5G applications: a review. Front Inform Technol Electron Eng, 21(1):62-71. https://doi.org/10.1631/FITEE.1900466https://doi.org/10.1631/FITEE.1900466
Zhao X, Yeo SP, Ong LC, 2018. Decoupling of inverted-F antennas with high-order modes of ground plane for 5G mobile MIMO platform. IEEE Trans Antenn Propag, 66(9):4485-4495. https://doi.org/10.1109/tap.2018.2851381https://doi.org/10.1109/tap.2018.2851381
关联资源
相关文章
相关作者
相关机构