FOLLOWUS
1.State Key Laboratory of Information Photonics and Optical Communications, Beijing 100876, China
2.Key Laboratory of Universal Wireless Communications of Ministry of Education, Beijing 100876, China
3.Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing 100876, China
4.School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
‡ Corresponding author
收稿日期:2024-08-13,
修回日期:2024-12-22,
纸质出版日期:2025-08
Scan QR Code
夏宇琪, 李秀萍, 寇根强, 等. 用于Ku波段卫星通信的3D打印低旁瓣双频双极化阵列天线[J]. 信息与电子工程前沿(英文), 2025,26(8):1501-1508.
Yuqi XIA, Xiuping LI, Genqiang KOU, et al. Three-dimensional-printed low-sidelobe dual-band dual-polarized antenna array for Ku-bandsatellite communications[J]. Frontiers of information technology & electronic engineering, 2025, 26(8): 1501-1508.
夏宇琪, 李秀萍, 寇根强, 等. 用于Ku波段卫星通信的3D打印低旁瓣双频双极化阵列天线[J]. 信息与电子工程前沿(英文), 2025,26(8):1501-1508. DOI: 10.1631/FITEE.2400709.
Yuqi XIA, Xiuping LI, Genqiang KOU, et al. Three-dimensional-printed low-sidelobe dual-band dual-polarized antenna array for Ku-bandsatellite communications[J]. Frontiers of information technology & electronic engineering, 2025, 26(8): 1501-1508. DOI: 10.1631/FITEE.2400709.
介绍了一种用于Ku波段卫星通信(SATCOM)的3D打印双频双极化间隙波导(GWG)缝隙阵列天线。两个堆叠的GWG通过正交槽分别激发腔内的准TE
420
和准TE
240
模式。基于脊间隙波导(RGW),提出一种具有大功率分配比的不等分功率分配器。实现了双极化功率锥形分布馈电网络,抑制了旁瓣电平(SLL)。天线通过直接金属激光烧结(DMLS)分层打印,整个天线通过螺钉组装在一起。测量的阻抗带宽覆盖了Ku波段SATCOM所需的发射频段(Tx,从14.0到14.5 GHz)和接收频段(Rx,从12.25到12.75 GHz)。测量结果显示,最大增益达到25.6 dBi,双频段的辐射效率超过72%。
Akbari M , Farahbakhsh A , Sebak AR , 2019 . Ridge gap waveguide multilevel sequential feeding network for high-gain circularly polarized array antenna . IEEE Trans Antenn Propag , 67 ( 1 ): 251 - 259 . https://doi.org/10.1109/TAP.2018.2878281 https://doi.org/10.1109/TAP.2018.2878281
Chen M , Fang XC , Wang W , et al. , 2020 . Dual-band dual-polarized waveguide slot antenna for SAR applications . IEEE Antenn Wirel Propag Lett , 19 ( 10 ): 1719 - 1723 . https://doi.org/10.1109/LAWP.2020.3014878 https://doi.org/10.1109/LAWP.2020.3014878
Cheng YJ , Tan FY , Zhou MM , et al. , 2020 . Dual-polarized wideband plate array antenna with high polarization isolation and low cross polarization for D-band high-capacity wireless application . IEEE Antenn Wirel Propag Lett , 19 ( 12 ): 2023 - 2027 . https://doi.org/10.1109/LAWP.2020.3020385 https://doi.org/10.1109/LAWP.2020.3020385
Dimitrov KC , Lee Y , Min BW , et al. , 2020 . Circularly polarized T-shaped slot waveguide array antenna for satellite communications . IEEE Antenn Wirel Propag Lett , 19 ( 2 ): 317 - 321 . https://doi.org/10.1109/LAWP.2019.2961386 https://doi.org/10.1109/LAWP.2019.2961386
Fenech H , Amos S , Tomatis A , et al. , 2015 . High throughput satellite systems: an analytical approach . IEEE Trans Aerosp Electr Syst , 51 ( 1 ): 192 - 202 . https://doi.org/10.1109/TAES.2014.130450 https://doi.org/10.1109/TAES.2014.130450
Ferrando-Rocher M , Herranz-Herruzo JI , Valero-Nogueira A , et al. , 2018 . Single-layer circularly-polarized Ka-band antenna using gap waveguide technology . IEEE Trans Antenn Propag , 66 ( 8 ): 3837 - 3845 . https://doi.org/10.1109/TAP.2018.2835639 https://doi.org/10.1109/TAP.2018.2835639
Ferrando-Rocher M , Herranz-Herruzo JI , Valero-Nogueira A , et al. , 2019a . Full-metal K-Ka dual-band shared-aperture array antenna fed by combined ridge-groove gap waveguide . IEEE Antenn Wirel Propag Lett , 18 ( 7 ): 1463 - 1467 . https://doi.org/10.1109/LAWP.2019.2919928 https://doi.org/10.1109/LAWP.2019.2919928
Ferrando-Rocher M , Herranz-Herruzo JI , Valero-Nogueira A , et al. , 2019b . 8×8 Ka-band dual-polarized array antenna based on gap waveguide technology . IEEE Trans Antenn Propag , 67 ( 7 ): 4579 - 4588 . https://doi.org/10.1109/TAP.2019.2908109 https://doi.org/10.1109/TAP.2019.2908109
Garcia-Marin E , Sanchez-Olivares P , Masa-Campos JL , et al. , 2021 . Dual circularly polarized array antenna based on corporate feeding network in square waveguide technology . IEEE Trans Antenn Propag , 69 ( 3 ): 1763 - 1768 . https://doi.org/10.1109/TAP.2020.3019355 https://doi.org/10.1109/TAP.2020.3019355
Huang GL , Zhou SG , Chio TH , et al. , 2015 . A low profile and low sidelobe wideband slot antenna array feb by an amplitude-tapering waveguide feed-network . IEEE Trans Antenn Propag , 63 ( 1 ): 419 - 423 . https://doi.org/10.1109/TAP.2014.2365238 https://doi.org/10.1109/TAP.2014.2365238
Jiang X , Jia FX , Cao Y , et al. , 2019 . Ka-band 8×8 low-sidelobe slot antenna array using a 1-to-64 high-efficiency network designed by new printed RGW technology . IEEE Antenn Wirel Propag Lett , 18 ( 6 ): 1248 - 1252 . https://doi.org/10.1109/LAWP.2019.2913955 https://doi.org/10.1109/LAWP.2019.2913955
Liu PY , Pedersen GF , Zhang S , 2022 . Wideband low-sidelobe slot array antenna with compact tapering feeding network for E-band wireless communications . IEEE Trans Antenn Propag , 70 ( 4 ): 2676 - 2685 . https://doi.org/10.1109/TAP.2021.3119030 https://doi.org/10.1109/TAP.2021.3119030
Lu YL , Shen SH , You Y , et al. , 2023 . Wideband dual linearly polarized hollow-waveguide septum antenna array for Ku-band satellite communications . IEEE Trans Antenn Propag , 71 ( 3 ): 2433 - 2442 . https://doi.org/10.1109/TAP.2022.3233626 https://doi.org/10.1109/TAP.2022.3233626
Miura Y , Hirokawa J , Ando M , et al. , 2011 . Double-layer full-corporate-feed hollow-waveguide slot array antenna in the 60-GHz band . IEEE Trans Antenn Propag , 59 ( 8 ): 2844 - 2851 . https://doi.org/10.1109/TAP.2011.2158784 https://doi.org/10.1109/TAP.2011.2158784
Ran JQ , Jin C , Zhang PY , et al. , 2022 . High-gain and low-loss dual-polarized antenna array with reduced sidelobe level based on gap waveguide at 28 GHz . IEEE Antenn Wirel Propag Lett , 21 ( 5 ): 1022 - 1026 . https://doi.org/10.1109/LAWP.2022.3155566 https://doi.org/10.1109/LAWP.2022.3155566
Sun FQ , Li YJ , Wang JH , et al. , 2022 . A millimeter-wave wideband dual-polarized antenna array with 3-D-printed air-filled differential feeding cavities . IEEE Trans Antenn Propag , 70 ( 2 ): 1020 - 1032 . https://doi.org/10.1109/TAP.2021.3111502 https://doi.org/10.1109/TAP.2021.3111502
Yang QL , Gao S , Luo Q , et al. , 2021 . A dual-polarized planar antenna array differentially-fed by orthomode transducer . IEEE Trans Antenn Propag , 69 ( 5 ): 2637 - 2647 . https://doi.org/10.1109/TAP.2020.3028211 https://doi.org/10.1109/TAP.2020.3028211
You S , Ahn SC , Kim YS , et al. , 2022 . Asymmetric iris structures for dual-polarization waveguide slot arrays for E-band wireless backhaul systems . IEEE Trans Antenn Propag , 70 ( 4 ): 2633 - 2644 . https://doi.org/10.1109/TAP.2021.3118729 https://doi.org/10.1109/TAP.2021.3118729
Yu L , Yang X , Zhang K , et al. , 2023 . Millimeter-wave dual-band dual-polarized shared-aperture antenna for satellite communication applications . IEEE MTT-S Int Wireless Symp , p. 1 - 3 . https://doi.org/10.1109/IWS58240.2023.10222598 https://doi.org/10.1109/IWS58240.2023.10222598
Zaman AU , Kildal PS , 2014 . Wide-band slot antenna arrays with single-layer corporate-feed network in ridge gap waveguide technology . IEEE Trans Antenn Propag , 62 ( 6 ): 2992 - 3001 . https://doi.org/10.1109/TAP.2014.2309970 https://doi.org/10.1109/TAP.2014.2309970
Zhang J , Li XP , Qi ZH , et al. , 2022 . Dual-band dual-polarization horn antenna array based on orthomode transducers with high isolation for satellite communication . IEEE Trans Antenn Propag , 70 ( 10 ): 9247 - 9259 . https://doi.org/10.1109/TAP.2022.3177473 https://doi.org/10.1109/TAP.2022.3177473
Zhang JJ , Zhao DX , You XH , 2022 . Analysis and design of a CMOS LNA with transformer-based integrated notch filter for Ku-band satellite communications . IEEE Trans Microw Theory Tech , 70 ( 1 ): 790 - 800 . https://doi.org/10.1109/TMTT.2021.3126858 https://doi.org/10.1109/TMTT.2021.3126858
Zhao X , Tian BN , Yeo SP , et al. , 2017 . Low-profile broadband dual-polarized integrated patch subarray for X-band synthetic aperture radar payload on small satellite . IEEE Antenn Wirel Propag Lett , 16 : 1735 - 1738 . https://doi.org/10.1109/LAWP.2017.2670550 https://doi.org/10.1109/LAWP.2017.2670550
关联资源
相关文章
相关作者
相关机构