FOLLOWUS
Centre for Optical and Electromagnetic Research, State Key Lab of MOI, Zhejiang University, Hangzhou 310058, China
[ "Yang GUO, E-mail: guoyang@coer-zju.org" ]
Jun HU, E-mail: hujun@zju.edu.cn
纸质出版日期:2014-12,
收稿日期:2014-04-14,
修回日期:2014-11-13,
Scan QR Code
一种可结合共形FDTD方法求解复杂电磁问题的新型并行剖分技术[J]. 信息与电子工程前沿(英文), 2014,15(12):1087-1097.
YANG GUO, XIANG-HUA WANG, JUN HU. A new parallel meshing technique integrated into the conformal FDTD method for solving complex electromagnetic problems. [J]. Frontiers of information technology & electronic engineering, 2014, 15(12): 1087-1097.
一种可结合共形FDTD方法求解复杂电磁问题的新型并行剖分技术[J]. 信息与电子工程前沿(英文), 2014,15(12):1087-1097. DOI: 10.1631/jzus.C1400135.
YANG GUO, XIANG-HUA WANG, JUN HU. A new parallel meshing technique integrated into the conformal FDTD method for solving complex electromagnetic problems. [J]. Frontiers of information technology & electronic engineering, 2014, 15(12): 1087-1097. DOI: 10.1631/jzus.C1400135.
研究目的
2
针对电大尺寸复杂模型实现一种高效并行剖分技术,并结合高阶共形FDTD方法,用于求解其时域电磁响应。
创新要点
2
提出一种基于射线追踪原理的新型FDTD网格剖分算法,并利用函数语言的天然并行优势实现剖分过程的高效并行实现。
研究方法
2
首先,提出一种基于射线追踪的网格剖分方法的原理,并与传统基于原点探测的剖分方法进行比较,证明其具有更高的准确性和效能。其次,分析该方法的可并行特征,并提出一种基于函数语言的并行实现方案。对一个电大金属球的雷达散射界面(RCS)仿真,证明该方法的准确性(图8)。并对多种不同处理器核数情况进行测试,证明该方法具有较高的并行效率(表2)。最后,结合使用高阶共形FDTD方法,成功模拟了战斗机、坦克和航母甲板的表面电流分布问题(图10-12)。
重要结论
2
针对电大尺寸复杂模型,实现其高效并行剖分,并利用高阶共形FDTD技术成功求解其时域电磁响应和表面电流分布。
A new efficient parallel finite-difference time-domain (FDTD) meshing algorithm
based on the ray tracing technique
is proposed in this paper. This algorithm can be applied to construct various FDTD meshes
such as regular and conformal ones. The Microsoft F# language is used for the algorithm coding
where all variables are unchangeable with its parallelization advantage being fully exploited. An improved conformal FDTD algorithm
also integrated with an improved surface current algorithm
is presented to simulate some complex 3D models
such as a sphere ball made of eight different materials
a tank
a J-10 aircraft
and an aircraft carrier with 20 aircrafts. Both efficiency and capability of the developed parallel FDTD algorithm are validated. The algorithm is applied to characterize the induced surface current distribution on an aircraft or a warship.
FDTD网格剖分并行函数语言表面电流分布
Finite-difference time-domain (FDTD)MeshingParallelFunction languageSurface current distribution
S. Benkler, , , N. Chavannes, , , N. Kuster. . Mastering conformal meshing for complex CAD-based C-FDTD simulations. . IEEE Antennas Propag. Mag., , 2008. . 50((2):):45--57. . DOI:10.1109/MAP.2008.4562256http://doi.org/10.1109/MAP.2008.4562256..
R. Flubacher, , , R. Luebbers. . FDTD mesh generation using computer graphics technology. . IEEE Antennas and Propagation Society Int. Symp., , 2003. . p.333--336. . DOI:10.1109/APS.2003.1217464http://doi.org/10.1109/APS.2003.1217464..
C. Guiffaut, , , K. Mahdjoubi. . A parallel FDTD algorithm using the MPI library. . IEEE Antennas Propag. Mag., , 2001. . 43((2):):94--103. . DOI:10.1109/74.924608http://doi.org/10.1109/74.924608..
M.F. Hadi, , , S.F. Mahmoud. . Optimizing the compact- FDTD algorithm for electrically large waveguiding structures. . Prog. Electromagn. Res., , 2007. . 75253--269. . DOI:10.2528/PIER07060703http://doi.org/10.2528/PIER07060703..
J. Hill. . Efficient Implementation of Mesh Generation and FDTD Simulation of Electromagnetic Fields. . MS Thesis, Worcester Polytechnic Institute, MA, USA, , 1996. ..
H.T. Hsu, , , F.Y. Kuo, , , H.T. Chou. . Convergence study of current sampling profiles for antenna design in the presence of electrically large and complex platforms using FIT-UTD hybridization approach. . Prog. Electromagn. Res., , 2009. . 99195--209. . DOI:10.2528/PIER09092404http://doi.org/10.2528/PIER09092404..
J.S. Juntunen, , , T.D. Tsiboukis. . Reduction of numerical dispersion in FDTD method through artificial anisotropy. . IEEE Trans. Microw. Theory Tech., , 2000. . 48((4):):582--588. . DOI:10.1109/22.842030http://doi.org/10.1109/22.842030..
J. Kim, , , F.L. Teixeira. . Parallel and explicit finite- element time-domain method for Maxwell's equations. . IEEE Trans. Antennas Propag., , 2011. . 59((6):):2350--2356. . DOI:10.1109/TAP.2011.2143682http://doi.org/10.1109/TAP.2011.2143682..
L.Y. Kong, , , J. Wang, , , W.Y. Yin. . A novel dielectric conformal FDTD method for computing SAR distribution of the human body in a metallic cabin illuminated by an intentional electromagnetic pulse (IEMP). . Prog. Electromagn. Res., , 2012. . 126355--373. . DOI:10.2528/PIER11112702http://doi.org/10.2528/PIER11112702..
J.Z. Lei, , , C.H. Liang, , , W. Ding, , , 等. . EMC analysis of antennas mounted on electrically large platforms with parallel FDTD method. . Prog. Electromagn. Res., , 2008. . 84205--220. . DOI:10.2528/PIER08071303http://doi.org/10.2528/PIER08071303..
X. Shan, , , S. Guan, , , Z. Liu, , , 等. . A new energy harvester using a piezoelectric and suspension electromagnetic mechanism. . J. Zhejiang Univ.-Sci. A (Appl. Phys. & Eng.), , 2013. . 14((12):):890--897. . DOI:10.1631/jzus.A1300210http://doi.org/10.1631/jzus.A1300210..
Y. Srisukh, , , J. Nehrbass, , , F.L. Teixeira, , , 等. . An approach for automatic grid generation in three-dimensional FDTD simulations of complex geometries. . IEEE Antennas Propag. Mag., , 2002. . 44((4):):75--80. . DOI:10.1109/MAP.2002.1043151http://doi.org/10.1109/MAP.2002.1043151..
A. Taflove, , , S.C. Hagness, , , 等. . Computational Electrodynamics: the Finite-Difference Time-Domain Method (2nd Ed.).. . Artech House, Norwood, MA, USA, , 2000. ..
A. Vaccari, , , A.C. Lesina, , , 等. . Cristoforetti, L., et al., 2011. Parallel implementation of a 3D subgridding FDTD algorithm for large simulations. . Prog. Electromagn. Res., , 2011. . 120263--292. . DOI:10.2528/PIER11063004http://doi.org/10.2528/PIER11063004..
H. Wang, , , L. Tang, , , Y. Guo, , , 等. . A 2DOF hybrid energy harvester based on combined piezoelectric and electromagnetic conversion mechanisms. . J. Zhejiang Univ.-Sci. A (Appl. Phys. & Eng.), , 2014. . 15((9):):711--722. . DOI:10.1631/jzus.A1400124http://doi.org/10.1631/jzus.A1400124..
J. Wang, , , W.Y. Yin. . Development of a novel FDTD (2, 4)-compatible conformal scheme for electromagnetic computations of complex curved PEC objects. . IEEE Trans. Antennas Propag., , 2013. . 61((1):):299--309. . DOI:10.1109/TAP.2012.2216851http://doi.org/10.1109/TAP.2012.2216851..
R. Xiong, , , B. Chen, , , J.J. Han, , , 等. . Transient resistance analysis of large grounding systems using the FDTD method. . Prog. Electromagn. Res., , 2012. . 132159--175. . DOI:10.2528/PIER12082601http://doi.org/10.2528/PIER12082601..
M. Yang, , , Y. Chen. . AutoMesh: an automatically adjustable, nonuniform, orthogonal FDTD mesh generator. . IEEE Antennas Propag. Mag., , 1999. . 41((2):):13--19. . DOI:10.1109/74.769687http://doi.org/10.1109/74.769687..
W.H. Yu, , , R. Mittra. . A conformal FDTD software package modeling antennas and microstrip circuit components. . IEEE Antennas Propag. Mag., , 2000. . 42((5):):28--39. . DOI:10.1109/74.883505http://doi.org/10.1109/74.883505..
关联资源
相关文章
相关作者
相关机构