

FOLLOWUS
1.College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
2.Shanghai Hexin Industrial Software Co., Ltd., Shanghai 201210, China
‡ Corresponding author
Received:02 August 2024,
Revised:2025-03-07,
Published Online:12 September 2025,
Published:2025-09
Scan QR Code
Zejia LYU, Jizhong SHEN, Xi CHEN. Algorithm and evaluation of generating pseudo-datasets for integrated circuit power analysis[J]. Frontiers of information technology & electronic engineering, 2025, 26(9): 1596-1608.
Zejia LYU, Jizhong SHEN, Xi CHEN. Algorithm and evaluation of generating pseudo-datasets for integrated circuit power analysis[J]. Frontiers of information technology & electronic engineering, 2025, 26(9): 1596-1608. DOI: 10.1631/FITEE.2400677.
平均功耗分析在大规模数字集成电路设计中至关重要。随着以数据驱动为基础的机器学习方法在电子设计自动化(EDA)领域的应用,对海量数据集的需求日益增长。为满足这一需求,本文提出一种基于图拓扑结构的全新伪电路生成算法。该算法通过将随机生成的有向无环图转换为门级Verilog伪组合电路网表,高效生成海量功耗分析样本。随后引入寄存器单元,将伪组合网表转化为伪时序电路网表。通过超参数调控电路拓扑结构,并在综合过程中施加适当的时序约束,最终生成伪电路数据集。采用主流功耗分析软件评估该方法,对生成的电路进行布局前平均功耗测试,将其性能与基准数据集对比,并通过电路拓扑复杂度分析与静态时序分析验证结果。实验结果验证了数据集的有效性,展现了算法的高效运行和鲁棒性,彰显其研究价值。
Average power analysis plays a crucial role in the design of large-scale digital integrated circuits (ICs). The integration of data-driven machine learning (ML) methods into the electronic design automation (EDA) fields has increased the demand for extensive datasets. To address this need
we propose a novel pseudo-circuit generation algorithm rooted in graph topology. This algorithm efficiently produces a multitude of power analysis examples by converting randomly generated directed acyclic graphs (DAGs) into gate-level Verilog pseudo-combinational circuit netlists. The subsequent introduction of register units transforms pseudo-combinational netlists into pseudo-sequential circuit netlists. Hyperparameters facilitate the control of circuit topology
while appropriate sequential constraints are applied during synthesis to yield a pseudo-circuit dataset. We evaluate our approach using the mainstream power analysis software
conducting pre-layout average power tests on the generated circuits
comparing their performance against benchmark datasets
and verifying the results through circuit topology complexity analysis and static timing analysis (STA). The results confirm the effectiveness of the dataset
and demonstrate the operational efficiency and robustness of the algorithm
underscoring its research value.
Ajayi T , Blaauw D , 2019 . OpenROAD: toward a self-driving, open-source digital layout implementation tool chain . Proc Government Microcircuit Applications and Critical Technology Conf , p. 1105 - 1110 .
Amarú L , Gaillardon PE , De Micheli G , 2015 . The EPFL combinational benchmark suite . Proc 24 th Int Workshop on Logic & Synthesis .
Amid A , Biancolin D , Gonzalez A , et al. , 2020 . Chipyard: integrated design, simulation, and implementation framework for custom SoCs . IEEE Micro , 40 ( 4 ): 10 - 21 . https://doi.org/10.1109/MM.2020.2996616 https://doi.org/10.1109/MM.2020.2996616
Brglez F , Bryan D , Kozminski K , 1989 . Combinational profiles of sequential benchmark circuits . IEEE Int Symp on Circuits and Systems , p. 1929 - 1934 . https://doi.org/10.1109/ISCAS.1989.100747 https://doi.org/10.1109/ISCAS.1989.100747
Burch R , Najm F , Yang P , et al. , 1992 . McPOWER: a Monte Carlo approach to power estimation . IEEE/ACM Int Conf on Computer-Aided Design , p. 90 - 97 . https://doi.org/10.1109/ICCAD.1992.279392 https://doi.org/10.1109/ICCAD.1992.279392
Chai ZM , Zhao YX , Lin YB , et al. , 2022 . CircuitNet: an open-source dataset for machine learning applications in electronic design automation (EDA) . Sci China Inform Sci , 65 ( 12 ): 227401 . https://doi.org/10.1007/s11432-022-3571-8 https://doi.org/10.1007/s11432-022-3571-8
Chowdhury AB , Tan B , Karri R , et al. , 2021 . OpenABC-D: a large-scale dataset for machine learning guided integrated circuit synthesis . https://doi.org/10.48550/arXiv.2110.11292 https://doi.org/10.48550/arXiv.2110.11292
Corno F , Reorda M , Squillero G , 2000 . RT-level ITC’99 benchmarks and first ATPG results . IEEE Des Test Comput , 17 ( 3 ): 44 - 53 . https://doi.org/10.1109/54.867894 https://doi.org/10.1109/54.867894
Fang WJ , Lu Y , Liu S , et al. , 2023 . MasterRTL: a pre-synthesis PPA estimation framework for any RTL design . IEEE/ACM Int Conf on Computer-Aided Design , p. 1 - 9 . https://doi.org/10.1109/ICCAD57390.2023.10323951 https://doi.org/10.1109/ICCAD57390.2023.10323951
Gautier Q , Althoff A , Meng PF , et al. , 2016 . Spector: an OpenCL FPGA benchmark suite . Int Conf on Field-Programmable Technology , p. 141 - 148 . https://doi.org/10.1109/FPT.2016.7929519 https://doi.org/10.1109/FPT.2016.7929519
Hansen MC , Yalcin H , Hayes JP , 1999 . Unveiling the ISCAS-85 benchmarks: a case study in reverse engineering . IEEE Des Test Comput , 16 ( 3 ): 72 - 80 . https://doi.org/10.1109/54.785838 https://doi.org/10.1109/54.785838
Kaeslin H , 2008 . Digital Integrated Circuit Design: from VLSI Architectures to CMOS Fabrication . Cambridge University Press , New York, USA , p. 386 - 458 . https://doi.org/doi.org/10.1017/CBO9780511805172 https://doi.org/doi.org/10.1017/CBO9780511805172
Khan S , Shi ZY , Li M , et al. , 2024 . DeepSeq: deep sequential circuit learning . Design, Automation & Test in Europe Conf & Exhibition , p. 1 - 2 . https://doi.org/10.23919/DATE58400.2024.10546639 https://doi.org/10.23919/DATE58400.2024.10546639
Kumar AKA , Gerstlauer A , 2019 . Learning-based CPU power modeling . ACM/IEEE 1 st Workshop on Machine Learning for CAD , p. 1 - 6 . https://doi.org/10.1109/MLCAD48534.2019.9142100 https://doi.org/10.1109/MLCAD48534.2019.9142100
Kumar AKA , Al-Salamin S , Amrouch H , et al. , 2023 . Machine learning-based microarchitecture-level power modeling of CPUs . IEEE Trans Comput , 72 ( 4 ): 941 - 956 . https://doi.org/10.1109/TC.2022.3185572 https://doi.org/10.1109/TC.2022.3185572
Li M , Khan S , Shi Z , et al. , 2022 . DeepGate: learning neural representations of logic gates . Proc 59 th ACM/IEEE Design Automation Conf , p. 667 - 672 . https://doi.org/10.1145/3489517.3530497 https://doi.org/10.1145/3489517.3530497
Najm FN , 1993 . Transition density: a new measure of activity in digital circuits . IEEE Trans Comput-Aided Des Integr Circ Syst , 12 ( 2 ): 310 - 323 . https://doi.org/10.1109/43.205010 https://doi.org/10.1109/43.205010
Nasser Y , Lorandel J , Prévotet JC , et al. , 2021 . RTL to transistor level power modeling and estimation techniques for FPGA and ASIC: a survey . IEEE Trans Comput-Aided Des Integr Circ Syst , 40 ( 3 ): 479 - 493 . https://doi.org/10.1109/TCAD.2020.3003276 https://doi.org/10.1109/TCAD.2020.3003276
OnchipUIS , 2016 . MRISCV . https://github.com/onchipuis/mriscv https://github.com/onchipuis/mriscv [Accessed on July 26, 2024 ] .
OnchipUIS , 2021 . VexRiscv . https://github.com/SpinalHDL/VexRiscv https://github.com/SpinalHDL/VexRiscv [Accessed on July 26, 2024 ] .
OpenCores Team , 2024 . OpenCores . https://opencores.org https://opencores.org [Accessed on July 26, 2024 ] .
Parulkar I , Wood A , Hoe JC , et al. , 2008 . OpenSPARC: an open platform for hardware reliability experimentation . 4 th Workshop on Silicon Errors in Logic-System Effects , p. 1 - 6 .
Rakesh MB , Das P , Sai Pranav KR , et al. , 2023 . GRILAPE: graph representation inductive learning-based average power estimation for frontend ASIC RTL designs . 36 th Int Conf on VLSI Design and 22nd Int Conf on Embedded Systems , p. 1 - 6 . https://doi.org/10.1109/VLSID57277.2023.00053 https://doi.org/10.1109/VLSID57277.2023.00053
Shi ZY , Pan HY , Khan S , et al. , 2023 . DeepGate2: functionality-aware circuit representation learning . IEEE/ACM Int Conf on Computer-Aided Design , p. 1 - 6 . https://doi.org/10.1109/ICCAD57390.2023.10323798 https://doi.org/10.1109/ICCAD57390.2023.10323798
Wei ZG , Arora A , Li RH , et al. , 2023 . HLSDataset: open-source dataset for ML-assisted FPGA design using high level synthesis . IEEE 34 th Int Conf on Application-Specific Systems, Architectures and Processors , p. 197 - 204 . https://doi.org/10.1109/ASAP57973.2023.00040 https://doi.org/10.1109/ASAP57973.2023.00040
Xie ZY , 2023 . Efficient runtime power modeling with on-chip power meters . Proc Int Symp on Physical Design , p. 168 - 174 . https://doi.org/10.1145/3569052.3578927 https://doi.org/10.1145/3569052.3578927
Xie ZY , Pan JY , Chang CC , et al. , 2023a . The dark side: security and reliability concerns in machine learning for EDA . IEEE Trans Comput-Aided Des Integr Circ Syst , 42 ( 4 ): 1171 - 1184 . https://doi.org/10.1109/TCAD.2022.3199172 https://doi.org/10.1109/TCAD.2022.3199172
Xie ZY , Zhang T , Peng YF , 2023b . Security and reliability challenges in machine learning for EDA: latest advances . 24 th Int Symp on Quality Electronic Design , p. 1 - 6 . https://doi.org/10.1109/ISQED57927.2023.10129359 https://doi.org/10.1109/ISQED57927.2023.10129359
YosysHQ , 2021 . PicoRV32—a Size-Optimized RISC-V CPU . https://github.com/YosysHQ/picorv32 https://github.com/YosysHQ/picorv32 [Accessed on July 26, 2024 ] .
Zhang YQ , Ren HX , Khailany B , 2020 . GRANNITE: graph neural network inference for transferable power estimation . 57 th ACM/IEEE Design Automation Conf , p. 1 - 6 . https://doi.org/10.1109/DAC18072.2020.9218643 https://doi.org/10.1109/DAC18072.2020.9218643
Zhou GF , Zhou JY , Lin HJ , 2018 . Research on NVIDIA deep learning accelerator . 12 th IEEE Int Conf on Anti-counterfeiting, Security, and Identification , p. 192 - 195 . https://doi.org/10.1109/ICASID.2018.8693202 https://doi.org/10.1109/ICASID.2018.8693202
Zhou Y , Ren HX , Zhang YQ , et al. , 2019 . PRIMAL: power inference using machine learning . Proc 56 th Annual Design Automation Conf , Article 39 . https://doi.org/10.1145/3316781.3317884 https://doi.org/10.1145/3316781.3317884
Zou SN , Zhang JX , Shi BZ , et al. , 2024 . PowerSyn: a logic synthesis framework with early power optimization . IEEE Trans Comput-Aided Des Integr Circ Syst , 43 ( 1 ): 203 - 216 . https://doi.org/10.1109/TCAD.2023.3297069 https://doi.org/10.1109/TCAD.2023.3297069
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621